Adaptive Multiple Kernels with SIR-Particle Filter Based Multi Human Tracking for Occluded Environment

نویسنده

  • T Karpagavalli
چکیده

This paper proposes a new technique to build a fully automatic tracking system which handles occlusion problem in a complex environment. In multiple human tracking, handling of occlusion is the challenging issue. When occlusion occurs, kernel based tracking was proven to be the promising approach. Hence, to overcome the occlusion problem the human body was considered to have multiple kernels. In this paper, SIR-Particle filter tracking was embedded with multiple kernels that build a fully automatic tracking system. The accuracy of the tracking system was evaluated by using Multiple Object Tracking Accuracy (MOTA) metric. Our tracking system was experimented using PETS benchmark dataset and found that the accuracy was computed as 97%. Keywords-Human tracking, MOTA, Multiple kernels, Occlusion, SIR-Particle filter

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Modified Particle Filter With Application in Target Tracking

The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...

متن کامل

Target Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks

Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...

متن کامل

Data Association for an Adaptive Multi-target Particle Filter Tracking System

This paper presents a novel approach to improve the accuracy of tracking multiple objects in a static scene using a particle filter system by introducing a data association step, a state queue for the collection of tracked objects and adaptive parameters to the system. The data association step makes use of the object detection phase and appearance model to determine if the approximated targets...

متن کامل

Two View Tracking with Occlusion Handling

This paper introduces a two view tracking method which uses the homography relation between the two views to handle occlusions. An adaptive appearance-based model is incorporated in a particle filter to realize robust visual tracking. Occlusion is detected using robust statistics. When there is occlusion in one view, the homography from this view to other views is estimated from previous tracki...

متن کامل

Convolutional Gating Network for Object Tracking

Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem.  The paper presents a new model for combining convolutiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015